Skip to main content
Sea ice on the Antarctic Peninsula as seen from Operation IceBridge’s 2017 Antarctic campaign.

IU technology supports NASA polar project in its new location

Argentinean base of operations shortens travel time, allows for more data gathering per flight

By Jen Bratton

With the addition of a new base camp and a new aircraft, NASA’s longest-running airborne mission is better equipped to study sea ice and glaciers in the fast-changing region of West Antarctica. And with the support of technology created by University Information Technology Services (UITS) Research Technologies, the mission is gathering and processing more information than ever.  

For the past nine years, Indiana University and the Center for Remote Sensing of Ice Sheets (CReSIS) at the University of Kansas have worked with NASA’s Operation IceBridge to collect data about polar ice caps. IU provides IT support for the missions and assists in processing the enormous amounts of data the mission generates, helping improve the models of the physical interactions of glaciers, sea ice, and ice sheets for scientists to study.  

In the past, the mission has flown out of Greenland, Antarctica, and Chile. In 2017, IceBridge introduced a new base of operations in Ushuaia, Argentina, to facilitate travel on the P-3 aircraft, which has a shorter range than the DC-8s used for previous missions.

All in the name of science
All in the name of science

Wells gets ready to board the P-3 aircraft, where he'll put in 12-hour days processing terabytes of data. He's accompanied by one of the friendly street dogs that hang out and chase rabbits at the airport.

Aaron Wells, polar field engineer, UITS Research Technologies, said the change maximizes the amount of time used for actual information-gathering in comparison to time in flight. “We fly from the southern tip of Argentina down to Antarctica, collect all the data, and then fly back,” Wells said. “Those are typically 12-14 hour days, including pre- and post-flight work.”

Data is gathered using three radar systems located in the plane’s belly and wings. The Accumulation radar measures how much snow has accumulated on the surface level; the Snow radar studies the thickness of snow on top of sea ice to help determine the thickness of the ice; and the Multichannel Coherent Radar Depth Sounder (MCoRDS) shoots all the way down to the bedrock to map the terrain below the ice.

The IU-designed Forward Observer supercomputer captures the data streams and makes multiple copies of the information, providing the scientists with nearly instant access to preliminary images during the flight.

The data gathered by this mission is used to track changes in sea and land ice. IceBridge researchers fly over the ice at the same time the TanDEM-X radar-based satellite travels overhead. “We use the Snow radar data to validate the satellite data,” Wells said. “Because we fly the same areas yearly, it allows researchers to model year to year and study any rate change.”

Each flight can result in the collection of up to 5 terabytes of data—the entire season can range from 100 to 350 terabytes. The IU-designed Forward Observer supercomputer captures the data streams and makes multiple copies of the information, providing the scientists with nearly instant access to preliminary images during the flight. Previously, the mission gathered data and brought it back to the base to be duplicated and preserved—a process taking up to 18 hours. The use of the Forward Observer not only makes data gathering more efficient, it also eliminates the risk of losing the only existing copy of the collected information.

Wells ensures the safe travel of all the hard drives and servers relating to the mission. “I put the data online for CReSIS so they can download it and begin the transfer from the hard drives to DC-WAN2 (Data Capacitor Wide Area Network 2—a high-speed data facility for accessing and sharing large amounts of data remotely),” Wells said. Once the data is processed and backed up, it is used to create images of literal slices of the snow, ice, and bedrock for scientists to study.

In addition to decreasing the mission’s distance from Antarctica, the Argentinean location and the use of the P-3 Orion aircraft led to participation in the search for the ARA San Juan, a diesel-electric submarine in service with the Argentine Navy. P-3 planes are used by the U.S. Navy for submarine hunting, due to their ability to fly slowly at low altitudes. Because of its role in the IceBridge mission, the plane is also equipped with technology to detect fluctuations in the Earth’s gravity, as well as infrared cameras and radar systems that might assist in locating the submarine. Sadly, the search and rescue mission was unsuccessful, and the submarine remains missing.

Wells and the rest of the Operation IceBridge crew will head to Greenland this spring to study the ice on the other side of the world.

Learn more about NASA’s Operation IceBridge mission in this documentary film by Great Big Story.